Row reduction applied to decoding of rank-metric and subspace codes
نویسندگان
چکیده
We show that error and erasure decoding of `-Interleaved Gabidulin codes, as well as list-` decoding of Mahdavifar–Vardy codes can be solved by row reducing skew polynomial matrices. Inspired by row reduction of F[x] matrices, we develop a general and flexible approach of transforming matrices over skew polynomial rings into certain normal forms. We apply this to solve generalised shift register problems, or Padé approximations, over skew polynomial rings, which occur in error and erasure decoding `-Interleaved Gabidulin codes. We obtain an algorithm with complexity O(`μ) where μ measures the size of the input problem and is proportional to the code length n in the case of decoding. Further, we show how to list-` decode Mahdavifar–Vardy subspace codes in O(`rm) time, where m is a parameter proportional to the dimension of the codewords’ ambient space and r is the dimension of the received subspace.
منابع مشابه
On the Decoder Error Probability of Rank Metric Codes and Constant-Dimension Codes
Rank metric codes can either be used as such for error correction in data storage equipments, or be lifted into constant-dimension codes (CDCs) and thus be used for error correction in random network coding. This paper investigates the decoder error probability (DEP) of rank metric codes and CDCs. We first study the DEP of rank metric codes using a bounded rank distance decoder. We derive asymp...
متن کاملOn (Partial) Unit Memory Codes Based on Gabidulin Codes
Partial) Unit Memory ((P)UM) codes provide a powerful possibility to construct convolutional codes based on block codes in order to achieve a high decoding performance. In this contribution, a construction based on Gabidulin codes is considered. This construction requires a modified rank metric, the so–called sum rank metric. For the sum rank metric, the free rank distance, the extended row ran...
متن کاملProperties of subspace subcodes of optimum codes in rank metric
Maximum rank distance codes denoted MRD-codes are the equivalent in rank metric of MDS-codes. Given any integer $q$ power of a prime and any integer $n$ there is a family of MRD-codes of length $n$ over $\FF{q^n}$ having polynomial-time decoding algorithms. These codes can be seen as the analogs of Reed-Solomon codes (hereafter denoted RS-codes) for rank metric. In this paper their subspace sub...
متن کاملExplicit rank-metric codes list-decodable with optimal redundancy
We construct an explicit family of linear rank-metric codes over any field Fh that enables efficient list decoding up to a fraction ρ of errors in the rank metric with a rate of 1− ρ− ε, for any desired ρ ∈ (0, 1) and ε > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding bey...
متن کاملA new class of rank-metric codes and their list decoding beyond the unique decoding radius
Compared with classical block codes, efficient list decoding of rank-metric codes seems more difficult. The evidences to support this view include: (i) so far people have not found polynomial time list decoding algorithms of rank-metric codes with decoding radius beyond (1 − R)/2 (where R is the rate of code) if ratio of the number of rows over the number of columns is constant, but not very sm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 82 شماره
صفحات -
تاریخ انتشار 2017